
Compiling Contextual Objects:
Bringing Higher-Order Abstract Syntax to

Programmers

Francisco Ferreira, Stefan Monnier and Brigitte Pientka

McGill University/Université de Montréal

1 / 37

Motivation

• We want to compile programs that manipulate other
programs.

There are several approaches to representing binders, for example:

• De Bruijn indices

• Nominal approaches[Pitts, 2001]

• Higher Order Abstract Syntax (HOAS) [Harper, Honsell,
Plotkin 1993]

2 / 37

Related Work
• When writing proofs:

• Pfenning and Schürmann [1999], the Twelf system.
• Felty and Momigliano [2012], the Hybrid using HOAS.
• Urban [2008] presents Isabelle/Nominal to reason about

structures with names in Isabelle.
• For programming

• Pouillard and Pottier [2010] present an abstract representation
that can be instantiated with several concrete ones.

• Shinwell et al. [2003]; Washburn and Weirich [2008]; West-
brook et al. [2011] with powerful support for programming
with binders but no support for dependent types.

• Chlipala [2008] with Parametric HOAS that supports a form of
weak-HOAS in an existing proof assistant with support for
dependent types, however manipulation of open terms is
problematic.

• Prog. languages which support HOAS and dependent types.
• Powolsky and Schürmann [2008] presented Delphin that uses

LF to represent binders with HOAS.
• Pientka [2008] introduced Beluga.

3 / 37

Contributions

• A framework to compile programs manipulating binders with
powerful pattern matching under binders, based on the notion
of contextual objects. An essential step to add support for
HOAS to existing programming languages.

• Helps bridge the gap between higher-order representations and
traditional first-order representations by converting first into a
high-level first-order representation that leaves the concrete
representation abstract.

• The compiler, that generates code where binders use de
Bruijn indices or names, sets up the stage for choosing
dynamically between the optimal one in each program.

4 / 37

What is Beluga?

• A language that supports specifications in the logical
framework LF[Harper, Honsell, Plotkin 1993]. A setting that
supports HOAS.

• A dependently typed, functional programming language that:
• Embeds LF objects together with a context
• Abstracts over contexts
• Supports pattern matching over LF terms and contexts.

5 / 37

How it’s done?

Dependent Types

Dependency Erasure

to transform types

into a simply typed

language [Harper,

2005]

HOAS
A conversion to a

“fresh-style”

representation using

worlds and links

[Pouillard, Pottier,

2010]

Pattern Matching
Compilation

Using a traditional

approach with more

rules supporting the

more expressive

patterns[Maranget,

2008]

Front
end

Dependency
erasure

Fresh-
Style

Pattern
matching

...

de Bruijn
indices

Names

6 / 37

Example: encoding the
Simply Typed λ-Calculus

• A standard LF specification using HOAS.

datatype exp : tp → type =
| app : exp (arr A B) → exp A → exp B

| lam : (exp A → exp B) → exp (arr A B);

datatype db : tp → type =
| one : db A
| shift: db A → db A
| lam’ : db B → db (arr A B)
| app’ : db (arr A B) → db A → db B;

7 / 37

Contextual objects

• As we traverse binders in terms we deal with open objects.
Contextual objects carry contexts that allow us to reason
about free variables.

let m = [. lam λx. (lam λy. app y x)];

let n = [x : exp T . (lam λy. app y x)];

Contextual Objects

Ψ ` M : A
[Ψ.M] : [Ψ.A]

• LF object M in context Ψ, i.e. all variables occurring in M are
within the scope of Ψ.

8 / 37

Contextual objects

• As we traverse binders in terms we deal with open objects.
Contextual objects carry contexts that allow us to reason
about free variables.

let m = [. lam λx. (lam λy. app y x)];

let n = [x : exp T . (lam λy. app y x)];

Contextual Objects

Ψ ` M : A
[Ψ.M] : [Ψ.A]

• LF object M in context Ψ, i.e. all variables occurring in M are
within the scope of Ψ.

9 / 37

Contextual objects

• As we traverse binders in terms we deal with open objects.
Contextual objects carry contexts that allow us to reason
about free variables.

let m = [. lam λx. (lam λy. app y x)];

let n = [x : exp T . (lam λy. app y x)];

Contextual Objects

Ψ ` M : A
[Ψ.M] : [Ψ.A]

• LF object M in context Ψ, i.e. all variables occurring in M are
within the scope of Ψ.

10 / 37

Translating HOAS to de Bruijn

schema ctx = exp T;
rec hoas2db : (g:ctx) [g. exp T] → [. db T] =

11 / 37

Translating HOAS to de Bruijn

schema ctx = exp T;
rec hoas2db : (g:ctx) [g. exp T] → [. db T] =
fn e ⇒ case e of

| [g. app (E1 ..) (E2 ..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

12 / 37

Translating HOAS to de Bruijn

schema ctx = exp T;
rec hoas2db : (g:ctx) [g. exp T] → [. db T] =
fn e ⇒ case e of

| [g. app (E1 ..) (E2 ..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

| [g. lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp . E .. x] in

[. lam’ F]

13 / 37

Translating HOAS to de Bruijn

schema ctx = exp T;
rec hoas2db : (g:ctx) [g. exp T] → [. db T] =
fn e ⇒ case e of

| [g. app (E1 ..) (E2 ..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

| [g. lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp . E .. x] in
[. lam’ F]

| [g, x :exp T . x] ⇒ [. one]

| [g, x:exp T . #p ..] ⇒
let [. F] = hoas2db [g . #p ..] in

[. shift F]

14 / 37

What is the “Fresh-Look Representation”?

An idea adapted from “A fresh look at programming with names
and binders”[Pouillard, Pottier, 2010]
An abstract representation of names and binders:

1 “name abstractions cannot be violated” or “the representation
of two α-equivalent terms cannot be distinguished”

2 “names do not escape their scope”

3 “names with different scopes cannot be mixed”

15 / 37

What is the “Fresh-Look Representation”?

An idea adapted from “A fresh look at programming with names
and binders”[Pouillard, Pottier, 2010]
An abstracted representation of names and binders, with the
following characteristics:

1 “name abstractions cannot be violated” or “the representation
of two α-equivalent terms cannot be distinguished”

2 “names do not escape their scope”

3 “names with different scopes cannot be mixed”

4 Easy to convert back to name and de Bruijn style variables
generating efficient code.

16 / 37

The Fresh Look Representation

world α

• Worlds are inhabited by names.
• The empty world is the world of closed terms.

17 / 37

The Fresh Look Representation

link

world α

world β

xβ

• Links relate a world to a bigger world with one extra name.

18 / 37

The Fresh Look Representation

link

world α

world β

world γ

link

xβ

zγ

• Links can be chained to create worlds with many names.

19 / 37

The Fresh Look Representation

import

link

world α

world β

world γ

link

xβ xγ

zγ

• Names from other worlds need to be imported before using
them.

20 / 37

The Pipeline

Front
end

Dependency
erasure

Fresh-
Style

Pattern
matching

...

de Bruijn
indices

Names

21 / 37

Dependency Erasure

rec hoas2db : (g:ctx) [g. exp T] → [. db T] =
fn e ⇒ case e of

| [g, x:exp T . x] ⇒ [. one]

| [g, x:exp T . #p ..] ⇒
let [. F] = hoas2db [g. #p ..] in
...

• Dependency erasure removes type indices.

• However, it does not remove implicit arguments.

22 / 37

Fresh Look Representation

For contextual objects:
Contexts 7→ Chains of links

Binders 7→ Links
Variables 7→ Names, imported into the

corresponding world of the term

23 / 37

The Pipeline

Front
end

Dependency
erasure

Fresh-
Style

Pattern
matching

...

de Bruijn
indices

Names

24 / 37

Pattern Matching Compilation

It is done in two steps:

• Discriminating on the shape of contexts.

• Building a decision tree for the rest of the pattern.
([Maranget, 2008])

ML-like Languages Beluga

Constructor Constructor [g,x:exp. app]

Bound Var. [g,x:exp. x]

Variables Meta Var. [g,x:exp. M..]

Parameter Var. [g,x:exp. #p..]

Context Shape [g,x:exp .]

25 / 37

Pattern Matching Compilation

It is done in two steps:

• Discriminating on the shape of contexts.

• Building a decision tree for the rest of the pattern.
([Maranget, 2008])

ML-like Languages Beluga

Constructor Constructor [g,x:exp. app]

Bound Var. [g,x:exp. x]

Variables Meta Var. [g,x:exp. M..]

Parameter Var. [g,x:exp. #p..]

Context Shape [g,x:exp .]

26 / 37

Pattern Matching Compilation

rec hoas2db : (g:ctx) [g. exp] → [. db] =
fn e ⇒ case e of

| [g, x:exp . x] ⇒
[. one]
| [g, x:exp . #p ..] ⇒

let [. F] = hoas2db [g. #p ..] in
[. shift F]

| [g. lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp . E .. x] in
[. lam’ F]

| [g. app (E1 ..) (E2 ..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

e

27 / 37

Pattern Matching Compilation

rec hoas2db : (g:ctx) [g. exp] → [. db] =
fn e ⇒ case e of

| [g, x:exp . x] ⇒
[. one]
| [g, x:exp . #p ..] ⇒

let [. F] = hoas2db [g. #p ..] in
[. shift F]

| [g . lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp . E .. x] in
[. lam’ F]

| [g . app (E1 ..) (E2 ..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

e

g, x:exp g

fall-over

28 / 37

Pattern Matching Compilation

rec hoas2db : (g:ctx) [g. exp] → [. db] =
fn e ⇒ case e of

| [g, x:exp . x] ⇒
[. one]
| [g, x:exp . #p ..] ⇒

let [. F] = hoas2db [g. #p ..] in
[. shift F]

| [g . lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp . E .. x] in
[. lam’ F]

| [g . app (E1 ..) (E2 ..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

e

g, x:exp g

x

29 / 37

Pattern Matching Compilation

rec hoas2db : (g:ctx) [g. exp] → [. db] =
fn e ⇒ case e of

| [g, x:exp . x] ⇒
[. one]

| [g, x:exp . #p ..] ⇒
let [. F] = hoas2db [g. #p ..] in
[. shift F]

| [g . lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp . E .. x] in
[. lam’ F]

| [g . app (E1 ..) (E2 ..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

e

g, x:exp g

x
#p

30 / 37

Pattern Matching Compilation

rec hoas2db : (g:ctx) [g. exp] → [. db] =
fn e ⇒ case e of

| [g, x:exp . x] ⇒
[. one]

| [g, x:exp . #p ..] ⇒
let [. F] = hoas2db [g. #p ..] in
[. shift F]

| [g . lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp . E .. x] in
[. lam’ F]

| [g . app (E1 ..) (E2 ..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

e

g, x:exp g

x
#p app

lam

31 / 37

Pattern Matching Compilation

rec hoas2db : (g:ctx) [g. exp] → [. db] =
fn e ⇒ case e of

| [g, x:exp . x] ⇒
[. one]

| [g, x:exp . #p ..] ⇒
let [. F] = hoas2db [g. #p ..] in
[. shift F]

| [g . lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp . E .. x] in
[. lam’ F]

| [g . app (E1 ..) (E2 ..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

e

g, x:exp g

x
#p app

lam

λx.

32 / 37

Pattern Matching Compilation

rec hoas2db : (g:ctx) [g. exp] → [. db] =
fn e ⇒ case e of

| [g, x:exp . x] ⇒
[. one]

| [g, x:exp . #p ..] ⇒
let [. F] = hoas2db [g. #p ..] in
[. shift F]

| [g . lam (λx. E .. x)] ⇒
let [. F] = hoas2db [g,x:exp . E .. x] in
[. lam’ F]

| [g . app (E1 ..) (E2..)] ⇒
let [. F1] = hoas2db [g. E1 ..] in
let [. F2] = hoas2db [g. E2 ..] in
[. app’ F1 F2];

e

g, x:exp g

x
#p app

lam

E1..
λx.

E2..
E..x

33 / 37

The Two Run-times

Front
end

Dependency
erasure

Fresh-
Style

Pattern
matching

...

de Bruijn
indices

Names

34 / 37

The Two Run-times
Matching operations

Implementation depends on the concrete representation of binders.

• Context Shape ([g,x:exp .]): a context matches a pattern
when it contains enough variables to be matched against the
pattern.

• Constructors([g,x:exp. app]): match when they are
the same.

• Bound Variables ([g,x:exp. x]): are compared by position.

• Meta Variables ([g,x:exp. M..]): when the inverse
substitution can be applied to the matched term.

• Parameter Variables ([g,x:exp. #p..]): similarly to meta
variables.

35 / 37

Contributions/Future work
What we have:

• A framework for compiling contextual objects.

• Compiling a pattern matching that supports contextual
objects. The scheme only supports first-order patterns, e.g.
no bound variables or parameter vars in functional position.

• A common intermediate representation to mediate between
higher-order and first-order binders.

Future work:

• Type preservation:
• The fresh-look representation should allow us to keep the types

longer
• Establish statically, that scope is preserved throughout the

compiler

• Support the whole Beluga language, i.e. Computational
data-types and full pattern matching.

• Fine-grained mixed de Bruijn/named representation

36 / 37

Thank You!

37 / 37

