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Compiling Beluga and Contextual Objects

I Beluga [Pientka and Dunfield, 2010] and [Pientka, 2008] is a
functional programming language that supports binders in its data
declarations using contextual objects.

I Compiling contextual objects and higher-order abstract syntax,
requires choosing a concrete internal representation. We use a
very versatile one that allows us to generate code in two styles,
code using names and de Bruijn indices for bound variables.

Contextual Objects

I Contextual LF [Nanevski et al., 2008] is an extension of the LF
logical framework.

I In Contextual LF terms and types carry around the context where
they exist.

I [ . M] denotes a LF object M in a context  and has type [ ]A.
I These objects are used to support Higher-Order Abstract Syntax

in the Beluga Language.

Contribution

I A framework for compiling contextual objects.
I The compilation of pattern matching of contextual objects, able to

match inside binders.
I A novel connection between nominal techniques and contextual

modal type theory.
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An Example Beluga Program

nat : type.

z : nat.

s : nat ! nat.

exp : type.

num : nat ! exp.

app : exp ! exp ! exp.

lam : (exp! exp) ! exp.

exp’ : type.

num’ : nat ! exp’.

app’ : exp’ ! exp’ ! exp’.

lam’ : exp’ ! exp’.

one : exp’.

shift : exp’ ! exp’.

schema ctx = exp ;
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rec hoas2db : (g : ctx) [g . exp] ! [. exp’] =

fn e ) case e of

|[g, x : exp . x] ) [. one]

|[g, x : exp . #p..] )
let [. M’] = hoas2db ([g . #p..]) in

[. shift M’]

|[g . app (M..) (N..)] )
let [. M’] = hoas2db [g. M..] in

let [. N’] = hoas2db [g. N..] in

[. app’ M’ N’]

|[g . lam(�x.M..x)] )
let [. M’] = hoas2db [g, x:exp. M..x] in

[. lam’ M’]

|[g . num X] ) [. num’ X]

;
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The Fresh Style Internal Representation

I The compiler uses a representation based
on [Pouillard and Pottier, 2010] that must be
converted to concrete representations in the
resulting code.

I Thanks to this representation pattern matching
uses abstract names and binders and it is
oblivious to the final representation.

I Many optimizations can use this representation,
(e.g. dead code elimination). However, there
are no optimizations in the current schema, so
which optimizations can be appropiately
expressed in the framework is part of the future
work.

I In the final stages the compiler generates code
that uses either unique names or de Bruijn
indices.
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I In the compiler, bound variables in contextual objects are represented using the fresh-style
representation. In this representation we have:
I Variables that are represented as abstract names.
I Worlds that names inhabit.
I Links that relate two worlds and introduce a new name in the bigger world.
I New binders (e.g. in � expressions), are links from the current world to a world.
I A chain of links may start from the empty world, or from an abstract world that reprsents a contextual

variable. This is different from the original representation and necessary for representing contextual
objects.

Pattern Matching Compilation

In order to support matching in contextual objects
bound variables and inside binders, Beluga has a
very rich pattern matching language.
Beluga supports:
I Matching on the shape of contexts.
I Matching on specific bound variables.
I Matching on any bound variable.
I Matching on meta-variables and substitutions.
I Matching inside � expressions.
I Matching on constructors.

Pattern matching compilation is based on
computing the splitting tree as
in [Maranget, 2008]. Because of the rich patterns,
there are more rules to split on besides variables
and constructors. Additionally, during runtime
determining whether a value matches a pattern is
more complex, the rules for performing such
matchin are presented in the figure below right.
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rec hoas2db : (g:ctx) [g. exp] ! [. exp’] =
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let [. M’] = hoas2db ([g. #p..]) in
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let [. M’] = hoas2db [g. M..] in

let [. N’] = hoas2db [g. N..] in

[. app’ M’ N’]
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] ) [. num’ X]

;

I The computation of the tree (e.g. the tree below
left) is done at compile time in the fresh style
representation.

I The runtime comparisons are a bit more
complex than for ML-style patterns.
Comparisonsy obey the rules in the image
below.
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Conclusions and Future Work

I The compiler uses a versatile representation with abstract names
that bridges higher-order to first-order representations and relates
nominal approaches to higher-order abstract syntax. It supports
pattern compilation for rich patterns that is able to match inside of
contextual objects.

I As future work, it is pending to explore keeping the dependent types
(a.k.a. removing the dependency erasure phase), studying the
relationship between coverage checking and pattern matching
under HOAS, and doing a performance evaluation of the name and
the de Bruijn index backends.
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