
Programming Logical Relations Proofs
with the Beluga language

Francisco Ferreira
based on work by Andrew Cave and Brigitte Pientka

McGill University
Montréal, Canada

Seminar
Imperial College London

September 5, 2014

Francisco Ferreira Programming logical relations proofs 1 / 26

Introduction

Motivation

How to program and reason
with formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally software.

• Proofs (that a given property is satisfied) are a fundamental part of
software.

What good features should have a meta-language to program and reason
with formal systems and proofs?

Francisco Ferreira Programming logical relations proofs 2 / 26

Introduction

Motivation

How to program and reason
with formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally software.

• Proofs (that a given property is satisfied) are a fundamental part of
software.

What good features should have a meta-language to program and reason
with formal systems and proofs?

Francisco Ferreira Programming logical relations proofs 2 / 26

Introduction

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relation

• Writing a proof in Beluga

• Conclusion and current work

“The limits of my language mean the limits of my world.”
- L. Wittgenstein

Francisco Ferreira Programming logical relations proofs 3 / 26

Introduction

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relations

• Writing a proof in Beluga

• Conclusion and current work

“The limits of my language mean the limits of my world.”
- L. Wittgenstein

Francisco Ferreira Programming logical relations proofs 3 / 26

Introduction

Simply Typed Lambda-calculus (Gentzen-style)

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A→ B | lam x .M

| app M N

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

(lam x .M) : (A→ B)
lamx,u

M : (A→ B) N : A

(app M N) : B
app

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

Francisco Ferreira Programming logical relations proofs 4 / 26

Introduction

Simply Typed Lambda-calculus (Gentzen-style)

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A→ B | lam x .M

| app M N

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

(lam x .M) : (A→ B)
lamx,u

M : (A→ B) N : A

(app M N) : B
app

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

Francisco Ferreira Programming logical relations proofs 4 / 26

Introduction

Simply Typed Lambda-calculus (Gentzen-style)

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A→ B | lam x .M

| app M N

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

(lam x .M) : (A→ B)
lamx,u

M : (A→ B) N : A

(app M N) : B
app

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

Francisco Ferreira Programming logical relations proofs 4 / 26

Introduction

Simply Typed Lambda-calculus with Contexts

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A→ B | lam x .M

| app M N

Typing Judgment: Γ ` M : A read as “M has type A in context Γ”

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N A

Γ ` (app M N) : B
app

Context Γ ::= · | Γ, x : A We are introducing the variable x together with
the assumption x : A

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lamx .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

Francisco Ferreira Programming logical relations proofs 5 / 26

Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26

Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used?

Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26

Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26

Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed?

Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26

Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26

Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?

(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26

Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26

Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26

Introduction

Weak Normalization for Simply Typed Lambda-calculus

Theorem
If ` M : A then there exists a value V s.t. M −→∗ V , i.e. M halts.

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA→B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

Francisco Ferreira Programming logical relations proofs 7 / 26

Introduction

Weak Normalization for Simply Typed Lambda-calculus

Theorem
If ` M : A then there exists a value V s.t. M −→∗ V , i.e. M halts.

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA→B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

Francisco Ferreira Programming logical relations proofs 7 / 26

Introduction

Weak Normalization for Simply Typed Lambda-calculus

Theorem
If ` M : A then there exists a value V s.t. M −→∗ V , i.e. M halts.

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA→B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)

Francisco Ferreira Programming logical relations proofs 7 / 26

Introduction

Generalization of Fundamental Lemma

Lemma (Main lemma)
If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

where σ ∈ RΓ is defined as:

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Francisco Ferreira Programming logical relations proofs 8 / 26

Introduction

Generalization of Fundamental Lemma

Lemma (Main lemma)
If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.
Case D =

x : A ∈ Γ
Γ ` x : A

var

σ ∈ RΓ by assumption
[σ](x) = M ∈ RA by lookup in σ ∈ RΓ and substitution property

Case D =

D1

Γ ` M : A→ B
D2

Γ ` N : A

Γ ` app M N : B
app

σ ∈ RΓ by assumption
N ∈ RA by i.h. D2

M ∈ RA→B by i.h. D1

M halts and ∀N ′ ∈ RA. (app M N ′) ∈ RB by definition
app M N ∈ RB by previous lines (∀-elim)

Francisco Ferreira Programming logical relations proofs 9 / 26

Introduction

Generalization of Fundamental Lemma

Lemma (Main lemma)
If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.
Case D =

x : A ∈ Γ
Γ ` x : A

var

σ ∈ RΓ by assumption
[σ](x) = M ∈ RA by lookup in σ ∈ RΓ and substitution property

Case D =

D1

Γ ` M : A→ B
D2

Γ ` N : A

Γ ` app M N : B
app

σ ∈ RΓ by assumption
N ∈ RA by i.h. D2

M ∈ RA→B by i.h. D1

M halts and ∀N ′ ∈ RA. (app M N ′) ∈ RB by definition
app M N ∈ RB by previous lines (∀-elim)

Francisco Ferreira Programming logical relations proofs 9 / 26

Introduction

Generalization of Fundamental Lemma

Lemma (Main lemma)
If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.
Case D =

x : A ∈ Γ
Γ ` x : A

var

σ ∈ RΓ by assumption
[σ](x) = M ∈ RA by lookup in σ ∈ RΓ and substitution property

Case D =

D1

Γ ` M : A→ B
D2

Γ ` N : A

Γ ` app M N : B
app

σ ∈ RΓ by assumption
N ∈ RA by i.h. D2

M ∈ RA→B by i.h. D1

M halts and ∀N ′ ∈ RA. (app M N ′) ∈ RB by definition
app M N ∈ RB by previous lines (∀-elim)

Francisco Ferreira Programming logical relations proofs 9 / 26

Introduction

Generalization of Fundamental Lemma

Lemma (Main lemma)
If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.

Case D =

D1

Γ, x :A ` M : B

Γ ` lam x .M : A→ B
lam

[σ](lam x .M) = lam x .([σ, x/x]M) by properties of substitution
halts (lam x .[σ, x/x]M) since it is a value
Suppose N ∈ RA.

[σ,N/x]M ∈ RB by I.H. on D1 since σ ∈ RΓ

[N/x][σ, x/x]M ∈ RB by properties of substitution

app (lam x . [σ, x/x]M) N ∈ RB by Backwards closure

Hence [σ](lam x .M) ∈ RA→B by definition

Francisco Ferreira Programming logical relations proofs 10 / 26

Introduction

Generalization of Fundamental Lemma

Lemma (Main lemma)
If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.

Case D =

D1

Γ, x :A ` M : B

Γ ` lam x .M : A→ B
lam

[σ](lam x .M) = lam x .([σ, x/x]M) by properties of substitution
halts (lam x .[σ, x/x]M) since it is a value
Suppose N ∈ RA.

[σ,N/x]M ∈ RB by I.H. on D1 since σ ∈ RΓ

[N/x][σ, x/x]M ∈ RB by properties of substitution

app (lam x . [σ, x/x]M) N ∈ RB by Backwards closure

Hence [σ](lam x .M) ∈ RA→B by definition

Francisco Ferreira Programming logical relations proofs 10 / 26

Introduction

Challenging Benchmark

• Model different level of bindings
lambda-binder, ∀ in reducibility definition R, quantification over

substitutions and contexts

• Simultanous substitution and algebraic properties
Substitution lemma, Reason about composition, decomposition,

associativity, identity, etc.

[·]M = M

[σ,N/x]M = [N/x][σ, x/x]M

[σ1][σ2]M = [[σ1]σ2]M

a dozen such properties are needed

• Main known approaches:
- Coq/Agda lack support for substitutions and binders
- Twelf, Delphin are too weak (to do it directly)
- Abella allows normalization proofs but lacks support for contexts

Francisco Ferreira Programming logical relations proofs 11 / 26

Introduction

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relations

• Writing a proof in Beluga

• Conclusion and current work

Francisco Ferreira Programming logical relations proofs 12 / 26

Introduction

Belugaµ: Two Level Approach

Level 1: Contextual logical framework LF [HHP’93,TOCL’08]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types

 support for α-renaming, substitution, adequate representations

• Contextual LF: Contextual types characterize contextual objects [TOCL’08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL’08,LFMTP’13]

Level 2: Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specific domain (= contextual LF)
together with domain-specific induction principle and recursive definitions (=
indexed recursive types)

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction hypothesis Recursive call

Francisco Ferreira Programming logical relations proofs 13 / 26

Introduction

Belugaµ: Two Level Approach

Level 1: Contextual logical framework LF [HHP’93,TOCL’08]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types
 support for α-renaming, substitution, adequate representations

• Contextual LF: Contextual types characterize contextual objects [TOCL’08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL’08,LFMTP’13]

Level 2: Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specific domain (= contextual LF)
together with domain-specific induction principle and recursive definitions (=
indexed recursive types)

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction hypothesis Recursive call

Francisco Ferreira Programming logical relations proofs 13 / 26

Introduction

Belugaµ: Two Level Approach

Level 1: Contextual logical framework LF [HHP’93,TOCL’08]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types
 support for α-renaming, substitution, adequate representations

• Contextual LF: Contextual types characterize contextual objects [TOCL’08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL’08,LFMTP’13]

Level 2: Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specific domain (= contextual LF)
together with domain-specific induction principle and recursive definitions (=
indexed recursive types)

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction hypothesis Recursive call

Francisco Ferreira Programming logical relations proofs 13 / 26

Introduction

Belugaµ: Two Level Approach

Level 1: Contextual logical framework LF [HHP’93,TOCL’08]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types
 support for α-renaming, substitution, adequate representations

• Contextual LF: Contextual types characterize contextual objects [TOCL’08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL’08,LFMTP’13]

Level 2: Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specific domain (= contextual LF)
together with domain-specific induction principle and recursive definitions (=
indexed recursive types)

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction hypothesis Recursive call

Francisco Ferreira Programming logical relations proofs 13 / 26

Beluga:Design and implementation

Step 1: Represent Types and Lambda-terms in LF

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A→ B | lam x .M

| app M N
Typing rules

c : i
const

x : A
u

...
M : B

(lam x .M) : (A→ B)
lamx

M : (A→ B) N : A

(app M N) : B
app

LF representation in Beluga

datatype tp:type =
| i: tp
| arr: tp → tp → tp;

datatype tm: tp → type =
| c : tm i
| lam: (tm A → tm B) → tm (arr A B)
| app: tm (arr A B) → tm A → tm B;

Francisco Ferreira Programming logical relations proofs 14 / 26

Beluga:Design and implementation

Step 1: Represent Types and Lambda-terms in LF

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A→ B | lam x .M

| app M N
Typing rules

c : i
const

x : A
u

...
M : B

(lam x .M) : (A→ B)
lamx

M : (A→ B) N : A

(app M N) : B
app

LF representation in Beluga

datatype tp:type =
| i: tp
| arr: tp → tp → tp;

datatype tm: tp → type =
| c : tm i
| lam: (tm A → tm B) → tm (arr A B)
| app: tm (arr A B) → tm A → tm B;

Francisco Ferreira Programming logical relations proofs 14 / 26

Beluga:Design and implementation

Step 2: Represent the evaluation rules

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

Value Judgment: M val read as “M is a value”

c val
v/c

lam x .M val
v/lam

LF representation in Beluga
datatype step : tm A→tm A→ type =
| s/beta :

step (app (lam M) N) (M N)
| s/app : step M M’ →

step (app M N) (app M’ N);

datatype val : tm A → type =
| v/c : val c
| v/lam : val (lam M);

datatype mstep : tm A → tm A → type =
| refl : mstep M M
| onestep : step M M’ → mstep M’ M’’

→ mstep M M’’;

datatype halts : tm A → type =
| h/value : mstep M M’ → val M’ →

halts M;

Francisco Ferreira Programming logical relations proofs 15 / 26

Beluga:Design and implementation

Step 2: Represent the evaluation rules

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

Value Judgment: M val read as “M is a value”

c val
v/c

lam x .M val
v/lam

LF representation in Beluga
datatype step : tm A→tm A→ type =
| s/beta :

step (app (lam M) N) (M N)
| s/app : step M M’ →

step (app M N) (app M’ N);

datatype val : tm A → type =
| v/c : val c
| v/lam : val (lam M);

datatype mstep : tm A → tm A → type =
| refl : mstep M M
| onestep : step M M’ → mstep M’ M’’

→ mstep M M’’;

datatype halts : tm A → type =
| h/value : mstep M M’ → val M’ →

halts M;

Francisco Ferreira Programming logical relations proofs 15 / 26

Beluga:Design and implementation

Step 2: Represent the evaluation rules

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

Value Judgment: M val read as “M is a value”

c val
v/c

lam x .M val
v/lam

LF representation in Beluga
datatype step : tm A→tm A→ type =
| s/beta :

step (app (lam M) N) (M N)
| s/app : step M M’ →

step (app M N) (app M’ N);

datatype val : tm A → type =
| v/c : val c
| v/lam : val (lam M);

datatype mstep : tm A → tm A → type =
| refl : mstep M M
| onestep : step M M’ → mstep M’ M’’

→ mstep M M’’;

datatype halts : tm A → type =
| h/value : mstep M M’ → val M’ →

halts M;

Francisco Ferreira Programming logical relations proofs 15 / 26

Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA→B = {M | halts M and ∀N ∈ RA, (app M N) ∈ RB}

Computation-level data types in Beluga

datatype Reduce : {A:[` tp]} {M:[` tm A]} ctype =
| I : [` halts M] → Reduce [` i] [` M]
| Arr : [` halts M] →

({N:[` tm A]} Reduce [` A] [` N] → Reduce [` B] [` app M N])
→ Reduce [` arr A B] [` M];

• [` app M N] and [` arr A B] are contextual types [TOCL’08].

• Note: → is overloaded.

- → is the LF function space : binders in the object language are
modelled by LF functions (used inside [])

- → is a computation-level function (used outside [])

• Not strictly positive definition, but stratified.

Francisco Ferreira Programming logical relations proofs 16 / 26

Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA→B = {M | halts M and ∀N ∈ RA, (app M N) ∈ RB}

Computation-level data types in Beluga

datatype Reduce : {A:[` tp]} {M:[` tm A]} ctype =
| I : [` halts M] → Reduce [` i] [` M]
| Arr : [` halts M] →

({N:[` tm A]} Reduce [` A] [` N] → Reduce [` B] [` app M N])
→ Reduce [` arr A B] [` M];

• [` app M N] and [` arr A B] are contextual types [TOCL’08].

• Note: → is overloaded.

- → is the LF function space : binders in the object language are
modelled by LF functions (used inside [])

- → is a computation-level function (used outside [])

• Not strictly positive definition, but stratified.

Francisco Ferreira Programming logical relations proofs 16 / 26

Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for substitutions σ ∈ RΓ :

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Computation-level data types in Beluga

datatype RedSub : (Γ:ctx){σ: ` Γ} ctype =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ M];

• Contexts are structured sequences and are classified by context schemas

schema ctx = x:tm A.

• Substitution τ are first-class and have type Ψ ` Φ providing a mapping from
Φ to Ψ.

Francisco Ferreira Programming logical relations proofs 17 / 26

Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for substitutions σ ∈ RΓ :

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Computation-level data types in Beluga

datatype RedSub : (Γ:ctx){σ: ` Γ} ctype =
| Nil : RedSub [` ^]
| Cons : RedSub [` σ] → Reduce [` A] [` M] → RedSub [` σ M];

• Contexts are structured sequences and are classified by context schemas

schema ctx = x:tm A.

• Substitution τ are first-class and have type Ψ ` Φ providing a mapping from
Φ to Ψ.

Francisco Ferreira Programming logical relations proofs 17 / 26

Beluga:Design and implementation

Theorems as Computation-level Types

Lemma (Backward closed)

If M −→ M ′ and M ′ ∈ RA then M ∈ RA.

rec closed : [` step M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M] = ? ;

Lemma (Main lemma)

If Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] = ? ;

Francisco Ferreira Programming logical relations proofs 18 / 26

Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M]

= ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] =

mlam Γ ⇒ mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ ` #p ...] ⇒ lookup [Γ] [Γ ` #p ...] rs % Variable

| [Γ ` app (M1 ...) (M2 ...)] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` lam (λx. M1 ... x)] ⇒ % Abstraction
Arr [` h/value refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

Francisco Ferreira Programming logical relations proofs 19 / 26

Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M]

= ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] =

mlam Γ ⇒ mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ ` #p ...] ⇒ lookup [Γ] [Γ ` #p ...] rs % Variable

| [Γ ` app (M1 ...) (M2 ...)] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` lam (λx. M1 ... x)] ⇒ % Abstraction
Arr [` h/value refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

Francisco Ferreira Programming logical relations proofs 19 / 26

Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M]

= ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] =

mlam Γ ⇒ mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ ` #p ...] ⇒ lookup [Γ] [Γ ` #p ...] rs % Variable

| [Γ ` app (M1 ...) (M2 ...)] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` lam (λx. M1 ... x)] ⇒ % Abstraction
Arr [` h/value refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

Francisco Ferreira Programming logical relations proofs 19 / 26

Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M]

= ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] =

mlam Γ ⇒ mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ ` #p ...] ⇒ lookup [Γ] [Γ ` #p ...] rs % Variable

| [Γ ` app (M1 ...) (M2 ...)] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` lam (λx. M1 ... x)] ⇒ % Abstraction
Arr [` h/value refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

Francisco Ferreira Programming logical relations proofs 19 / 26

Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M]

= ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] =

mlam Γ ⇒ mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ ` #p ...] ⇒ lookup [Γ] [Γ ` #p ...] rs % Variable

| [Γ ` app (M1 ...) (M2 ...)] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` lam (λx. M1 ... x)] ⇒ % Abstraction
Arr [` h/value refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

Francisco Ferreira Programming logical relations proofs 19 / 26

Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M]

= ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] =

mlam Γ ⇒ mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ ` #p ...] ⇒ lookup [Γ] [Γ ` #p ...] rs % Variable

| [Γ ` app (M1 ...) (M2 ...)] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` lam (λx. M1 ... x)] ⇒ % Abstraction
Arr [` h/value refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code

Francisco Ferreira Programming logical relations proofs 19 / 26

Beluga:Design and implementation

Fundamental Lemma

rec closed : [` mstep M M’] → Reduce [` A] [` M’] → Reduce [` A] [` M]

= ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [` σ] → Reduce [` A] [` M σ] =

mlam Γ ⇒ mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ ` #p ...] ⇒ lookup [Γ] [Γ ` #p ...] rs % Variable

| [Γ ` app (M1 ...) (M2 ...)] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [` _] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` lam (λx. M1 ... x)] ⇒ % Abstraction
Arr [` h/value refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` c] ⇒ I [` h/value refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga codeFrancisco Ferreira Programming logical relations proofs 19 / 26

Beluga:Design and implementation

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relations

• Writing a proof in Beluga . . .

• Conclusion and current work

Francisco Ferreira Programming logical relations proofs 20 / 26

Beluga:Design and implementation

Revisiting the Design of Beluga

• Level 1: Contextual LF

On paper proof In Beluga [IJCAR’10]

Well-formed derivations Dependent types
Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects [TOCL’08]
Context Context schemas
Properties of contexts Typing for schemas
(weakening, uniqueness)
Substitutions Substitution type [LFMTP’13]
(composition, identity)

• Level 2: Functional programming with indexed types [POPL’08,POPL’12]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression

Induction hypothesis Recursive call

Francisco Ferreira Programming logical relations proofs 21 / 26

Beluga:Design and implementation

Revisiting the Design of Beluga

• Level 1: Contextual LF

On paper proof In Beluga [IJCAR’10]

Well-formed derivations Dependent types
Renaming,Substitution α-renaming, β-reduction in LF
Well-scoped derivation Contextual types and objects [TOCL’08]
Context Context schemas
Properties of contexts Typing for schemas
(weakening, uniqueness)
Substitutions Substitution type [LFMTP’13]
(composition, identity)

• Level 2: Functional programming with indexed types [POPL’08,POPL’12]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression

Induction hypothesis Recursive call

Francisco Ferreira Programming logical relations proofs 21 / 26

Beluga:Design and implementation

Revisiting the Design of Beluga

• Level 1: Contextual LF

On paper proof In Beluga [IJCAR’10]

Well-formed derivations Dependent types
Renaming,Substitution α-renaming, β-reduction in LF
Well-scoped derivation Contextual types and objects [TOCL’08]
Context Context schemas
Properties of contexts Typing for schemas
(weakening, uniqueness)
Substitutions Substitution type [LFMTP’13]
(composition, identity)

• Level 2: Functional programming with indexed types [POPL’08,POPL’12]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression

Induction hypothesis Recursive call
Francisco Ferreira Programming logical relations proofs 21 / 26

Beluga:Design and implementation

Other Examples and Comparison

• Other examples using logical relations:

- Weak normalization which evaluates under lambda-abstraction
- Algorithmic equality for STLC (A. Cave) (draft available)

=⇒ Sufficient evidence that Beluga is ideally suited to support such
advanced proofs

• Comparison (concentrating on the given weak normalization proof)

- Coq/Agda formalization with well-scoped de Bruijn indices: dozen
additional lemmas

- Abella: 4 additional lemmas and diverges a bit from on-paper proof
- Twelf: Too weak to for directly encoding such proofs; Implement

auxiliary logic.

Francisco Ferreira Programming logical relations proofs 22 / 26

Beluga:Design and implementation

What Have We Achieved?

• Foundation for programming proofs in context [POPL’12]

- Proof term language for first-order logic over contextual LF as domain
- Uniform treatment of contextual types, context, . . .
- Modular foundation for dependently-typed programming with

phase-distinction ⇒ Generalization of DML and ATS

• Extending contextual LF with first-class substitutions and their
equational theory [LFMTP’13]

• Rich set of examples

- Type-preserving compiler for simply typed lambda-calculus (O. Savary
Belanger, S. Monnier, B. Pientka [CPP’13])

- (Weak) Normalization proofs (A. Cave and B.Pientka)

• Latest release in Feb’14: Support for indexed data types, first-class
substitutions, equational theory behind substitutions

Francisco Ferreira Programming logical relations proofs 23 / 26

Beluga:Design and implementation

My Current Work

Developing a core calculus for Beluga:

• Elaboration of implicit parameters

• Elaboration to a more primitive core

Francisco Ferreira Programming logical relations proofs 24 / 26

Beluga:Design and implementation

My Current Work

Developing a core calculus for Beluga:

• Elaboration of implicit parameters (User friendliness, [PPDP’14])

• Elaboration to a more primitive core(Easier to trust, de Bruijn
Criterion)

Francisco Ferreira Programming logical relations proofs 24 / 26

Beluga:Design and implementation

Current Work

• Prototype in OCaml (ongoing - next release imminent)
providing an interactive programming mode

• Structural recursion (B. Pientka, S. S. Ruan, A. Abel)

Develops a foundation of structural recursive functions for Beluga; proof of

normalization; prototype implementation under way

• Coinduction in Beluga (D. Thibodeau, B. Pientka, A. Cave)

Extending work on simply-typed copatterns [POPL’13] to Beluga
• Case study:

- Type preserving compiler (O. Savary Belanger, B. Pientka, CPP’13)
- Proof-carrying authorization with constraints (Tao Xue)

• Extending Beluga to full dependent types (A. Cave)
• Elaboration for dependently typed programs (F. Ferreira, B. Pientka,

PPDP’14)
• ORBI - Benchmarks for comparing systems supporting HOAS

encodings (A. Felty, A. Momigliano, B.Pientka, March 2014)

Francisco Ferreira Programming logical relations proofs 25 / 26

Beluga:Design and implementation

The End

Thank you!

Download prototype and examples at

http://complogic.cs.mcgill.ca/beluga/

Current Belugians:
Brigitte Pientka, Mathias Puech, Tao Xue, Andrew Cave, Francisco
Ferreira, Stefan Monnier, David Thibodeau, Sherry Shanshan Ruan,

Shawn Otis, Rohan Jacob-Rao, Scott Cooper,
Aidan Marchildon and Steve Thephsourinthone

Francisco Ferreira Programming logical relations proofs 26 / 26

http://complogic.cs.mcgill.ca/beluga/

	Introduction
	Beluga:Design and implementation

