Programming Logical Relations Proofs with the Beluga language

Francisco Ferreira based on work by Andrew Cave and Brigitte Pientka

McGill University Montréal, Canada

Seminar Imperial College London September 5, 2014

Motivation

How to program and reason with formal systems and proofs?

- Formal systems (given via axioms and inference rules) play an important role when designing languages and more generally software.
- Proofs (that a given property is satisfied) are a fundamental part of software.

Motivation

How to program and reason with formal systems and proofs?

- Formal systems (given via axioms and inference rules) play an important role when designing languages and more generally software.
- Proofs (that a given property is satisfied) are a fundamental part of software.

What good features should have a meta-language to program and reason with formal systems and proofs?

This Talk

Design and implementation of Beluga

- Introduction
- Example: Proof by logical relation
- Writing a proof in Beluga
- Conclusion and current work

"The limits of my language mean the limits of my world." - L. Wittgenstein

This Talk

Design and implementation of Beluga

- Introduction
- Example: Proof by logical relations
- Writing a proof in Beluga
- Conclusion and current work

"The limits of my language mean the limits of my world." - L. Wittgenstein

Simply Typed Lambda-calculus (Gentzen-style)

Types and Terms

Types A, B ::= i $| A \rightarrow B$ Terms M, N ::= $x | \mathbf{c}$ | $\lim x M$ | $\lim x M$

Simply Typed Lambda-calculus (Gentzen-style)

Simply Typed Lambda-calculus (Gentzen-style)

Simply Typed Lambda-calculus with Contexts

Types and Terms
Types A, B::= i

$$|A \to B$$

Terms M, N ::= x | c
 $|am x.M|$
 $app M N$
Typing Judgment: $\Gamma \vdash M : A$
read as "M has type A in context Γ "
 $\frac{x : A \in \Gamma}{\Gamma \vdash x : A}$
 $\frac{\Gamma, x : A \vdash M : B}{\Gamma \vdash (lam x.M) : (A \to B)}$
 lam^{x}
 $\frac{\Gamma \vdash M : (A \to B)}{\Gamma \vdash (app M N) : B}$
 $read as "M steps to M''$
read as "M steps to M'''
 $\frac{M \longrightarrow M'}{app (lam x.M) N \longrightarrow [N/x]M}$
s/beta
 $\frac{M \longrightarrow M'}{app M N \longrightarrow app M' N}$
s/app

Typing rules

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \quad \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash (\operatorname{lam} x.M):(A \to B)} \operatorname{lam}^{x} \quad \frac{\Gamma \vdash M:(A \to B) \quad \Gamma \vdash N:B}{\Gamma \vdash (\operatorname{app} M N):B} \operatorname{app}$$

Evaluation rules

 $\frac{d \text{con rules}}{d \text{app (lam } x.M) \ N \longrightarrow [N/x]M} \text{ s/beta } \frac{M \longrightarrow M'}{d \text{app } M \ N \longrightarrow d \text{app } M' \ N} \text{ s/app}$

Typing rules

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \quad \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash (\operatorname{lam} x.M):(A \to B)} \operatorname{lam}^{x} \quad \frac{1}{P}$$

$$\frac{\Gamma \vdash M : (A \to B) \quad \Gamma \vdash N : B}{\Gamma \vdash (\operatorname{app} M N) : B} \operatorname{app}$$

Evaluation rules

$$\frac{1}{\operatorname{app}(\operatorname{Iam} x.M) N \longrightarrow [N/x]M}$$
s/beta

$$\frac{M \longrightarrow M'}{\text{app } M N \longrightarrow \text{app } M' N} \text{ s/app}$$

• What kinds of variables are used?

Typing rules

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \quad \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash (\operatorname{lam} x.M):(A \to B)} \operatorname{lam}^{x} \quad \frac{\Gamma \vdash M:(A \to B) \quad \Gamma \vdash N:B}{\Gamma \vdash (\operatorname{app} M N):B} \operatorname{app}$$

• What kinds of variables are used? Bound variables, Schematic variables

Typing rules

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \quad \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash (\operatorname{lam} x.M):(A \to B)} \operatorname{lam}^{x} \quad \frac{\Gamma \vdash M:(A \to B) \quad \Gamma \vdash N:B}{\Gamma \vdash (\operatorname{app} M N):B} \operatorname{app}$$

- What kinds of variables are used? Bound variables, Schematic variables
- What operations on variables are needed?

Typing rules

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \quad \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash (\operatorname{lam} x.M):(A \to B)} \operatorname{lam}^{x} \quad \frac{\Gamma \vdash M:(A \to B) \quad \Gamma \vdash N:B}{\Gamma \vdash (\operatorname{app} M N):B} \operatorname{app}$$

- What kinds of variables are used? Bound variables, Schematic variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables

Typing rules

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \quad \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash (\operatorname{lam} x.M):(A \to B)} \operatorname{lam}^{x} \quad \frac{\Gamma \vdash M:(A \to B) \quad \Gamma \vdash N:B}{\Gamma \vdash (\operatorname{app} M N):B} \operatorname{app}$$

- What kinds of variables are used? Bound variables, Schematic variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- How should we represent contexts? What properties do contexts have?

Typing rules

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \quad \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash (\operatorname{lam} x.M):(A \to B)} \operatorname{lam}^{x} \quad \frac{\Gamma \vdash M:(A \to B) \quad \Gamma \vdash N:B}{\Gamma \vdash (\operatorname{app} M N):B} \operatorname{app}$$

- What kinds of variables are used? Bound variables, Schematic variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- How should we represent contexts? What properties do contexts have? (Structured) sequences, Uniqueness of declaration, Weakening, Substitution lemma, etc.

Typing rules

$$\frac{x:A \in \Gamma}{\Gamma \vdash x:A} \quad \frac{\Gamma, x:A \vdash M:B}{\Gamma \vdash (\operatorname{lam} x.M):(A \to B)} \operatorname{lam}^{x} \quad \frac{\Gamma \vdash M:(A \to B) \quad \Gamma \vdash N:B}{\Gamma \vdash (\operatorname{app} M N):B} \operatorname{app}$$

- What kinds of variables are used? Bound variables, Schematic variables
- What operations on variables are needed? Substitution for bound variable, Renaming of bound variables, Substitution for schematic variables
- How should we represent contexts? What properties do contexts have? (Structured) sequences, Uniqueness of declaration, Weakening, Substitution lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a matter how much support one gets in a given meta-language.

Weak Normalization for Simply Typed Lambda-calculus

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If $\vdash M : A$ then there exists a value V s.t. $M \longrightarrow^* V$, i.e. M halts.

Weak Normalization for Simply Typed Lambda-calculus

Theorem

If $\vdash M : A$ then there exists a value V s.t. $M \longrightarrow^* V$, i.e. M halts.

Proof.

1 Define reducibility candidate \mathcal{R}_A

$$\begin{array}{rcl} \mathcal{R}_{\mathbf{i}} & = & \{M \mid M \text{ halts}\} \\ \mathcal{R}_{A \to B} & = & \{M \mid M \text{ halts and } \forall N \in \mathcal{R}_A, (\text{app } M N) \in \mathcal{R}_B\} \end{array}$$

- **2** If $M \in \mathcal{R}_A$ then M halts.
- **3** Backwards closed: If $M' \in \mathcal{R}_A$ and $M \longrightarrow M'$ then $M \in \mathcal{R}_A$.
- 4 Fundamental Lemma: If $\vdash M : A$ then $M \in \mathcal{R}_A$. (Requires a generalization)

Lemma (Main lemma)

If $\mathcal{D} : \Gamma \vdash M : A$ and $\sigma \in \mathcal{R}_{\Gamma}$ then $[\sigma]M \in \mathcal{R}_{A}$.

where $\sigma \in \mathcal{R}_{\Gamma}$ is defined as:

$$\frac{\sigma \in \mathcal{R}_{\Gamma} \quad N \in \mathcal{R}_{A}}{(\sigma, N/x) \in \mathcal{R}_{\Gamma, x:A}}$$

Lemma (Main lemma)

If $\mathcal{D} : \Gamma \vdash M : A$ and $\sigma \in \mathcal{R}_{\Gamma}$ then $[\sigma]M \in \mathcal{R}_{A}$.

Lemma (Main lemma) If $\mathcal{D} : \Gamma \vdash M : A \text{ and } \sigma \in \mathcal{R}_{\Gamma} \text{ then } [\sigma]M \in \mathcal{R}_A.$ Proof. Case $\mathcal{D} = \frac{x : A \in \Gamma}{\Gamma \vdash x : A} \text{ var}$ $\sigma \in \mathcal{R}_{\Gamma}$ by assumption $[\sigma](x) = M \in \mathcal{R}_A$ by lookup in $\sigma \in \mathcal{R}_{\Gamma}$ and substitution property

Francisco Ferreira

```
Lemma (Main lemma)
If \mathcal{D} : \Gamma \vdash M : A and \sigma \in \mathcal{R}_{\Gamma} then [\sigma]M \in \mathcal{R}_{A}.
Proof.
Case \mathcal{D} = \frac{x : A \in \Gamma}{\Gamma \vdash x : A} var
\sigma \in \mathcal{R}_{\Gamma}
                                                                                                                            by assumption
[\sigma](x) = M \in \mathcal{R}_A
                                                                by lookup in \sigma \in \mathcal{R}_{\Gamma} and substitution property
                                                              \mathcal{D}_2
                                    \mathcal{D}_1
Case \mathcal{D} = \frac{\Gamma \vdash M : A \rightarrow B}{\Gamma \vdash \text{app } M N : B} app
\sigma \in \mathcal{R}_{\Gamma}
                                                                                                                            by assumption
N \in \mathcal{R}_{\Delta}
                                                                                                                                   by i.h. \mathcal{D}_2
M \in \mathcal{R}_{A \rightarrow B}
                                                                                                                                   by i.h. \mathcal{D}_1
M halts and \forall N' \in \mathcal{R}_A. (app M N' \in \mathcal{R}_B
                                                                                                                               by definition
app M N \in \mathcal{R}_B
                                                                                                       by previous lines (\forall-elim)
```

Programming logical relations proofs

Lemma (Main lemma) If $\mathcal{D} : \Gamma \vdash M : A$ and $\sigma \in \mathcal{R}_{\Gamma}$ then $[\sigma]M \in \mathcal{R}_{A}$. Proof. \mathcal{D}_1 Case $\mathcal{D} = \Gamma, x: A \vdash M : B$ $\frac{1}{\Gamma \vdash lam \times M : A \rightarrow B}$ lam $[\sigma](\operatorname{lam} x.M) = \operatorname{lam} x.([\sigma, x/x]M)$ halts (lam $x.[\sigma, x/x]M$) Suppose $N \in \mathcal{R}_A$. $[\sigma, N/x]M \in \mathcal{R}_B$ $[N/x][\sigma, x/x]M \in \mathcal{R}_B$ app (lam x. $[\sigma, x/x]M$) $N \in \mathcal{R}_B$ Hence $[\sigma](\text{lam } x.M) \in \mathcal{R}_{A \to B}$

by properties of substitution since it is a value

by I.H. on \mathcal{D}_1 since $\sigma \in \mathcal{R}_{\Gamma}$ by properties of substitution by Backwards closure by definition

Lemma (Main lemma) If $\mathcal{D} : \Gamma \vdash M : A$ and $\sigma \in \mathcal{R}_{\Gamma}$ then $[\sigma]M \in \mathcal{R}_{A}$. Proof. \mathcal{D}_1 Case $\mathcal{D} = \Gamma, x: A \vdash M : B$ $\frac{1}{\Gamma \vdash \text{lam } \times M : A \rightarrow B} \text{ lam}$ $[\sigma](\operatorname{lam} x.M) = \operatorname{lam} x.([\sigma, x/x]M)$ halts (lam $x.[\sigma, x/x]M$) Suppose $N \in \mathcal{R}_A$. $[\sigma, N/x]M \in \mathcal{R}_B$ $[N/x][\sigma, x/x]M \in \mathcal{R}_B$ app (lam x. $[\sigma, x/x]M$) $N \in \mathcal{R}_B$ Hence $[\sigma](\text{lam } x.M) \in \mathcal{R}_{A \to B}$

by properties of substitution since it is a value

by I.H. on \mathcal{D}_1 since $\sigma \in \mathcal{R}_{\Gamma}$

by properties of substitution

by Backwards closure

by definition

Challenging Benchmark

- Model different level of bindings lambda-binder, ∀ in reducibility definition R, quantification over substitutions and contexts
- Simultanous substitution and algebraic properties Substitution lemma, Reason about composition, decomposition, associativity, identity, etc.

a dozen such properties are needed

- Main known approaches:
 - Coq/Agda lack support for substitutions and binders
 - Twelf, Delphin are too weak (to do it directly)
 - Abella allows normalization proofs but lacks support for contexts

This Talk

Design and implementation of Beluga

- Introduction
- Example: Proof by logical relations
- Writing a proof in Beluga
- Conclusion and current work

Level 1: Contextual logical framework LF [HHP'93, TOCL'08]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types

Level 1: Contextual logical framework LF [HHP'93, TOCL'08]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types \rightsquigarrow support for α -renaming, substitution, adequate representations
- - → abstract notion of contexts and substitution [POPL'08,LFMTP'13]

Level 1: Contextual logical framework LF [HHP'93, TOCL'08]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types \rightsquigarrow support for α -renaming, substitution, adequate representations
- Contextual LF: Contextual types characterize contextual objects [TOCL'08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL'08,LFMTP'13]

Level 2: Functional programming with indexed types [POPL'08, POPL'12]

Proof term language for first-order logic over a specific domain (= contextual LF) together with domain-specific induction principle and recursive definitions (= indexed recursive types)

Level 1: Contextual logical framework LF [HHP'93, TOCL'08]

- Compact representation of formal systems and derivations
- Higher-order abstract syntax and dependent types \rightsquigarrow support for α -renaming, substitution, adequate representations
- Contextual LF: Contextual types characterize contextual objects [TOCL'08] \rightsquigarrow support well-scoped derivations → abstract notion of contexts and substitution [POPL'08,LFMTP'13]

Level 2: Functional programming with indexed types [POPL'08, POPL'12]

Proof term language for first-order logic over a specific domain (= contextual LF) together with domain-specific induction principle and recursive definitions (= indexed recursive types)

On paper proof	Proofs as functions in Beluga	
Case analysis Inversion Induction hypothesis	Case analysis and pattern matching Pattern matching using let-expression Recursive call	
Francisco Ferreira	Programming logical relations proofs	13 / 26

Step 1: Represent Types and Lambda-terms in LF

Step 1: Represent Types and Lambda-terms in LF

LF representation in Beluga

datatype tp:type = | i: tp | arr: tp \rightarrow tp \rightarrow tp; $\begin{array}{l} \mbox{datatype tm: tp} \rightarrow \mbox{type =} \\ | \ \mbox{c : tm i} \\ | \ \mbox{lam: (tm A} \rightarrow \mbox{tm B}) \rightarrow \mbox{tm (arr A B)} \\ | \ \mbox{app: tm (arr A B)} \rightarrow \mbox{tm A} \rightarrow \mbox{tm B}; \end{array}$

Step 2: Represent the evaluation rules

Evaluation Judgment:
$$M \longrightarrow M'$$
 read as " M steps to M' "
 $app (lam x.M) N \longrightarrow [N/x]M$ s/beta $M \longrightarrow M'$
 $M \longrightarrow M'$
 $app M N \longrightarrow app M' N$ s/app
Value Judgment: M val read as " M is a value"
 $\overline{c \text{ val } v/c}$ $\overline{lam x.M \text{ val } v/lam}$

Step 2: Represent the evaluation rules

Evaluation Judgment:
$$M \longrightarrow M'$$
read as " M steps to M' " app (lam $x.M$) $N \longrightarrow [N/x]M$ $s/beta$ $M \longrightarrow M'$ $app (Iam x.M) N \longrightarrow [N/x]M$ $s/beta$ $M \longrightarrow M'$ Value Judgment: M valread as " M is a value" c val v/c $lam x.M$ val v/c $lam x.M$ val

LF representation in Beluga

```
datatype step : tm A→tm A→ type =
| s/beta :
    step (app (lam M) N) (M N)
| s/app : step M M' →
    step (app M N) (app M' N);
datatype val : tm A → type =
| v/c : val c
| v/lam : val (lam M);
```

Step 2: Represent the evaluation rules

Evaluation Judgment:
$$M \longrightarrow M'$$
 read as " M steps to M' "
 $app (lam x.M) N \longrightarrow [N/x]M$ s/beta $M \longrightarrow M'$
 $M \longrightarrow M'$
 $app M N \longrightarrow app M' N$ s/app
Value Judgment: M val read as " M is a value"
 $\overline{c \text{ val } v/c} = \frac{V/c}{lam x.M \text{ val } v/lam}$

LF representation in Beluga

datatype step : tm A→tm A→ type =
| s/beta :
 step (app (lam M) N) (M N)
| s/app : step M M' →
 step (app M N) (app M' N);
datatype val : tm A → type =
| v/c : val c
| v/lam : val (lam M);
datatype mstep : tm A → type =
| refl : mstep M M' →
 mstep M M' → mstep M' M'' →
 mstep M M' → val M' →
 halts M;

Reducibility candidates for terms $M \in \mathcal{R}_A$:

$$egin{array}{rcl} \mathcal{R}_{\mathbf{i}} &=& \{M \mid extsf{halts} \; M\} \ \mathcal{R}_{A o B} &=& \{M \mid extsf{halts} \; M extsf{ and } orall N \in \mathcal{R}_A, (extsf{app} \; M \; N) \in \mathcal{R}_B\} \end{array}$$

Reducibility candidates for terms $M \in \mathcal{R}_A$:

$$egin{array}{rcl} \mathcal{R}_{f i} &=& \{M \mid ext{halts} \; M\} \ \mathcal{R}_{A o B} &=& \{M \mid ext{halts} \; M ext{ and } orall N \in \mathcal{R}_A, (ext{app} \; M \; N) \in \mathcal{R}_B\} \end{array}$$

Computation-level data types in Beluga

- [\vdash app M N] and [\vdash arr A B] are contextual types [TOCL'08].
- Note: \rightarrow is overloaded.
 - \rightarrow is the LF function space : binders in the object language are modelled by LF functions (used inside [])
 - \rightarrow is a computation-level function (used outside [])
- Not strictly positive definition, but stratified.

Reducibility candidates for substitutions $\sigma \in \mathcal{R}_{\Gamma}$:

$$\frac{\sigma \in \mathcal{R}_{\Gamma} \quad N \in \mathcal{R}_{A}}{(\sigma, N/x) \in \mathcal{R}_{\Gamma, x: A}}$$

Reducibility candidates for substitutions $\sigma \in \mathcal{R}_{\Gamma}$:

$$\frac{\sigma \in \mathcal{R}_{\Gamma} \quad N \in \mathcal{R}_{A}}{(\sigma, N/x) \in \mathcal{R}_{\Gamma, x: A}}$$

Computation-level data types in Beluga

```
datatype RedSub : (\Gamma:ctx){\sigma: \vdash \Gamma} ctype =
| Nil : RedSub [\vdash \uparrow]
| Cons : RedSub [\vdash \sigma] \rightarrow Reduce [\vdash A] [\vdash M] \rightarrow RedSub [\vdash \sigma M];
```

- Contexts are structured sequences and are classified by context schemas schema ctx = x:tm A.
- Substitution τ are first-class and have type Ψ ⊢ Φ providing a mapping from Φ to Ψ.

Theorems as Computation-level Types

Lemma (Backward closed) If $M \longrightarrow M'$ and $M' \in \mathcal{R}_A$ then $M \in \mathcal{R}_A$.

 $\textbf{rec closed} \ : \ [\vdash \texttt{step M M'}] \ \rightarrow \ \texttt{Reduce} \ [\vdash \texttt{A}] \ [\vdash \texttt{M'}] \ \rightarrow \ \texttt{Reduce} \ [\vdash \texttt{A}] \ [\vdash \texttt{M}] = \ ? \ ;$

Lemma (Main lemma) If $\Gamma \vdash M : A$ and $\sigma \in \mathcal{R}_{\Gamma}$ then $[\sigma]M \in \mathcal{R}_A$.

rec main : { $\Gamma: ctx$ }{M: [$\Gamma \vdash tm$ A]} RedSub [$\vdash \sigma$] \rightarrow Reduce [\vdash A] [\vdash M σ] = ?;

rec closed : [\vdash mstep M M'] \rightarrow Reduce [\vdash A] [\vdash M'] \rightarrow Reduce [\vdash A] [\vdash M] = ? ;

 $\texttt{rec main} : \{ \texttt{\Gamma:ctx} \} \{ \texttt{M}: [\texttt{\Gamma} \vdash \texttt{tm A}] \} \texttt{ RedSub } [\vdash \sigma] \rightarrow \texttt{Reduce } [\vdash \texttt{A}] [\vdash \texttt{M} \sigma] = \texttt{rec main} : \{ \texttt{T:ctx} \} \{ \texttt{M}: \texttt{C} \vdash \texttt{tm A} \} \}$

```
rec closed : [ \vdash mstep M M'] \rightarrow Reduce [ \vdash A] [ \vdash M'] \rightarrow Reduce [ \vdash A] [ \vdash M]
= ?;
rec main : {[:ctx}{M:[\Gamma \vdash tm A]} RedSub [ \vdash \sigma] \rightarrow Reduce [ \vdash A] [ \vdash M \sigma] =
mlam \Gamma \Rightarrow mlam M \Rightarrow fn rs \Rightarrow case [[\vdash M ...] of
| [[\vdash #p...] \Rightarrow lookup [[] [[\vdash #p...] rs % Variable
```

```
rec closed : [ \vdash mstep M M'] \rightarrow Reduce [ \vdash A] [ \vdash M'] \rightarrow Reduce [ \vdash A] [ \vdash M]
= ?;
rec main : {[:ctx}{M:[\Gamma \vdash tm A]} RedSub [ \vdash \sigma] \rightarrow Reduce [ \vdash A] [ \vdash M \sigma] =
mlam \Gamma \Rightarrow mlam M \Rightarrow fn rs \Rightarrow case [\Gamma \vdash M...] of
| [\Gamma \vdash #p...] \Rightarrow lookup [\Gamma] [\Gamma \vdash #p...] rs % Variable
| [\Gamma \vdash app (M1...) (M2...)] \Rightarrow % Application
let Arr ha f = main [\Gamma] [\Gamma \vdash M1...] rs in
f [ \vdash ] (main [\Gamma] [\Gamma \vdash M2...] rs)
```

```
\textbf{rec closed} : [ \vdash \texttt{mstep M M'}] \rightarrow \texttt{Reduce} [ \vdash \texttt{A}] [ \vdash \texttt{M'}] \rightarrow \texttt{Reduce} [ \vdash \texttt{A}] [ \vdash \texttt{M}]
= ? ;
rec main : {\Gamma:ctx}{M:[\Gamma \vdash tm A]} RedSub [\vdash \sigma] \rightarrow Reduce [\vdash A] [\vdash M \sigma] =
mlam \Gamma \Rightarrow mlam M \Rightarrow fn rs \Rightarrow case [\Gamma \vdash M...] of
| [\Gamma \vdash \#p...] \Rightarrow lookup [\Gamma] [\Gamma \vdash \#p...] rs
                                                                                                                    % Variable
\mid [\Gamma \vdash app (M1 ...) (M2 ...)] \Rightarrow
                                                                                                              % Application
   let Arr ha f = main [\Gamma] [\Gamma \vdash M1...] rs in
   f [\vdash ] (main [\Gamma] [\Gamma \vdash M2...] rs)
\mid [\Gamma \vdash \text{lam} (\lambda x. M1 ... x)] \Rightarrow
                                                                                                             % Abstraction
   Arr [\vdash h/value refl v/lam]
     (mlam N \Rightarrow fn rN \Rightarrow closed [ \vdash s/beta]
                                                     (\min [\Gamma, x: tm] [\Gamma, x \vdash M1 ... x] (Cons rs rN)))
```

```
\textbf{rec closed} : [ \vdash \texttt{mstep M M'}] \rightarrow \texttt{Reduce} [ \vdash \texttt{A}] [ \vdash \texttt{M'}] \rightarrow \texttt{Reduce} [ \vdash \texttt{A}] [ \vdash \texttt{M}]
= ? ;
rec main : {\Gamma:ctx}{M:[\Gamma \vdash tm A]} RedSub [\vdash \sigma] \rightarrow Reduce [\vdash A] [\vdash M \sigma] =
mlam \Gamma \Rightarrow mlam M \Rightarrow fn rs \Rightarrow case [\Gamma \vdash M...] of
\mid [\Gamma \vdash #p...] \Rightarrow lookup [\Gamma] [\Gamma \vdash #p...] rs
                                                                                                                   % Variable
\mid [\Gamma \vdash app (M1 ...) (M2 ...)] \Rightarrow
                                                                                                             % Application
   let Arr ha f = main [\Gamma] [\Gamma \vdash M1...] rs in
   f [\vdash] (main [\Gamma] [\Gamma \vdash M2...] rs)
\mid [\Gamma \vdash \text{lam} (\lambda x. M1 ... x)] \Rightarrow
                                                                                                            % Abstraction
   Arr [\vdash h/value refl v/lam]
     (mlam N \Rightarrow fn rN \Rightarrow closed [ \vdash s/beta]
                                                    (\min [\Gamma, x: tm] [\Gamma, x \vdash M1 ... x] (Cons rs rN)))
| [\Gamma \vdash c] \Rightarrow I [\vdash h/value refl v/c];
                                                                                                        % Constant
```

```
\textbf{rec closed} : [ \vdash \texttt{mstep M M'}] \rightarrow \texttt{Reduce} [ \vdash \texttt{A}] [ \vdash \texttt{M'}] \rightarrow \texttt{Reduce} [ \vdash \texttt{A}] [ \vdash \texttt{M}]
= ? ;
rec main : {\Gamma:ctx}{M:[\Gamma \vdash tm A]} RedSub [\vdash \sigma] \rightarrow Reduce [\vdash A] [\vdash M \sigma] =
mlam \Gamma \Rightarrow mlam M \Rightarrow fn rs \Rightarrow case [\Gamma \vdash M...] of
| [\Gamma \vdash \#p...] \Rightarrow lookup [\Gamma] [\Gamma \vdash \#p...] rs
                                                                                                                   % Variable
\mid [\Gamma \vdash app (M1 ...) (M2 ...)] \Rightarrow
                                                                                                            % Application
   let Arr ha f = main [\Gamma] [\Gamma \vdash M1...] rs in
   f [\vdash ] (main [\Gamma] [\Gamma \vdash M2...] rs)
\mid [\Gamma \vdash \text{lam} (\lambda x. M1 ... x)] \Rightarrow
                                                                                                            % Abstraction
   Arr [\vdash h/value refl v/lam]
     (mlam N \Rightarrow fn rN \Rightarrow closed [ \vdash s/beta]
                                                    (main [\Gamma,x:tm _] [\Gamma,x \vdash M1 ... x] (Cons rs rN)))
| [\Gamma \vdash c] \Rightarrow I [\vdash h/value refl v/c];
                                                                                                        % Constant
```

- Direct encoding of on-paper proof
- Equations about substitution properties automatically discharged (amounts to roughly a dozen lemmas about substitution and weakening)

Francisco Ferreira

This Talk

Design and implementation of Beluga

- Introduction
- Example: Proof by logical relations
- Writing a proof in Beluga ...
- Conclusion and current work

Revisiting the Design of Beluga

• Level 1: Contextual LF

On paper proof	In Beluga [IJCAR'10]
Well-formed derivations Renaming,Substitution	Dependent types $lpha$ -renaming, eta -reduction in LF

Revisiting the Design of Beluga

• Level 1: Contextual LF

On paper proof	In Beluga [IJCAR'10]
Well-formed derivations Renaming,Substitution Well-scoped derivation Context Properties of contexts (weakening, uniqueness) Substitutions (composition, identity)	Dependent types α -renaming, β -reduction in LF Contextual types and objects [TOCL'08] Context schemas Typing for schemas Substitution type [LFMTP'13]

Revisiting the Design of Beluga

• Level 1: Contextual LF

On paper proof	In Beluga [IJCAR'10]
Well-formed derivations Renaming,Substitution Well-scoped derivation Context Properties of contexts (weakening, uniqueness) Substitutions (composition, identity)	Dependent types α -renaming, β -reduction in LF Contextual types and objects [TOCL'08] Context schemas Typing for schemas Substitution type [LFMTP'13]

• Level 2: Functional programming with indexed types [POPL'08, POPL'12]

Case analysis Inversion Induction hypothesis Francisco Ferreira Case analysis and pattern matching Pattern matching using let-expression Recursive call

Programming logical relations proofs

Other Examples and Comparison

- Other examples using logical relations:
 - Weak normalization which evaluates under lambda-abstraction
 - Algorithmic equality for STLC (A. Cave) (draft available)
 - \Longrightarrow Sufficient evidence that Beluga is ideally suited to support such advanced proofs
- Comparison (concentrating on the given weak normalization proof)
 - Coq/Agda formalization with well-scoped de Bruijn indices: dozen additional lemmas
 - Abella: 4 additional lemmas and diverges a bit from on-paper proof
 - Twelf: Too weak to for directly encoding such proofs; Implement auxiliary logic.

What Have We Achieved?

- Foundation for programming proofs in context [POPL'12]
 - Proof term language for first-order logic over contextual LF as domain
 - Uniform treatment of contextual types, context, ...
 - Modular foundation for dependently-typed programming with phase-distinction \Rightarrow Generalization of DML and ATS
- Extending contextual LF with first-class substitutions and their equational theory [LFMTP'13]
- Rich set of examples
 - Type-preserving compiler for simply typed lambda-calculus (O. Savary Belanger, S. Monnier, B. Pientka [CPP'13])
 - (Weak) Normalization proofs (A. Cave and B.Pientka)
- Latest release in Feb'14: Support for indexed data types, first-class substitutions, equational theory behind substitutions

My Current Work

Developing a core calculus for Beluga:

- Elaboration of implicit parameters
- Elaboration to a more primitive core

My Current Work

Developing a core calculus for Beluga:

- Elaboration of implicit parameters (User friendliness, [PPDP'14])
- Elaboration to a more primitive core(Easier to trust, de Bruijn Criterion)

Current Work

- Prototype in OCaml (ongoing next release imminent) providing an interactive programming mode
- Structural recursion (B. Pientka, S. S. Ruan, A. Abel) Develops a foundation of structural recursive functions for Beluga; proof of normalization; prototype implementation under way
- Coinduction in Beluga (D. Thibodeau, B. Pientka, A. Cave) Extending work on simply-typed copatterns [POPL'13] to Beluga
- Case study:
 - Type preserving compiler (O. Savary Belanger, B. Pientka, CPP'13)
 - Proof-carrying authorization with constraints (Tao Xue)
- Extending Beluga to full dependent types (A. Cave)
- Elaboration for dependently typed programs (F. Ferreira, B. Pientka, PPDP'14)
- ORBI Benchmarks for comparing systems supporting HOAS encodings (A. Felty, A. Momigliano, B.Pientka, March 2014)

The End

Thank you!

Download prototype and examples at

http://complogic.cs.mcgill.ca/beluga/

Current Belugians:

Brigitte Pientka, Mathias Puech, Tao Xue, Andrew Cave, Francisco Ferreira, Stefan Monnier, David Thibodeau, Sherry Shanshan Ruan, Shawn Otis, Rohan Jacob-Rao, Scott Cooper, Aidan Marchildon and Steve Thephsourinthone