
Programming Logical Relations Proofs
with the Beluga language

Francisco Ferreira
based on work by Andrew Cave and Brigitte Pientka

McGill University
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Introduction

Motivation

How to program and reason
with formal systems and proofs?

• Formal systems (given via axioms and inference rules) play an important
role when designing languages and more generally software.

• Proofs (that a given property is satisfied) are a fundamental part of
software.

What good features should have a meta-language to program and reason
with formal systems and proofs?
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Introduction

This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relation

• Writing a proof in Beluga

• Conclusion and current work

“The limits of my language mean the limits of my world.”
- L. Wittgenstein
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Introduction

Simply Typed Lambda-calculus (Gentzen-style)

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A→ B | lam x .M

| app M N

Typing Judgment: M : A read as “M has type A” (Gentzen-style)

c : i
const

x : A
u

...
M : B

(lam x .M) : (A→ B)
lamx,u

M : (A→ B) N : A

(app M N) : B
app

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app
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Introduction

Simply Typed Lambda-calculus with Contexts

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A→ B | lam x .M

| app M N

Typing Judgment: Γ ` M : A read as “M has type A in context Γ”

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N A

Γ ` (app M N) : B
app

Context Γ ::= · | Γ, x : A We are introducing the variable x together with
the assumption x : A

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lamx .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app
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Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26



Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used?

Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26



Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26



Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed?

Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26



Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26



Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?

(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26



Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26



Introduction

Talking about Derivations

Typing rules

x : A ∈ Γ
Γ ` x : A

Γ, x : A ` M : B

Γ ` (lam x .M) : (A→ B)
lamx

Γ ` M : (A→ B) Γ ` N : B

Γ ` (app M N) : B
app

Evaluation rules

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

• What kinds of variables are used? Bound variables, Schematic variables

• What operations on variables are needed? Substitution for bound variable,
Renaming of bound variables, Substitution for schematic variables

• How should we represent contexts? What properties do contexts have?
(Structured) sequences, Uniqueness of declaration, Weakening, Substitution
lemma, etc.

Any mechanization of proofs must deal with these issues; it is just a
matter how much support one gets in a given meta-language.

Francisco Ferreira Programming logical relations proofs 6 / 26



Introduction

Weak Normalization for Simply Typed Lambda-calculus

Theorem
If ` M : A then there exists a value V s.t. M −→∗ V , i.e. M halts.

Proof.

1 Define reducibility candidate RA

Ri = {M | M halts}
RA→B = {M | M halts and ∀N ∈ RA, (app M N) ∈ RB}

2 If M ∈ RA then M halts.

3 Backwards closed: If M ′ ∈ RA and M −→ M ′ then M ∈ RA.

4 Fundamental Lemma: If ` M : A then M ∈ RA. (Requires a generalization)
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Introduction

Generalization of Fundamental Lemma

Lemma (Main lemma)
If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

where σ ∈ RΓ is defined as:

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A
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Introduction

Generalization of Fundamental Lemma

Lemma (Main lemma)
If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.
Case D =

x : A ∈ Γ
Γ ` x : A

var

σ ∈ RΓ by assumption
[σ](x) = M ∈ RA by lookup in σ ∈ RΓ and substitution property

Case D =

D1

Γ ` M : A→ B
D2

Γ ` N : A

Γ ` app M N : B
app

σ ∈ RΓ by assumption
N ∈ RA by i.h. D2

M ∈ RA→B by i.h. D1

M halts and ∀N ′ ∈ RA. (app M N ′) ∈ RB by definition
app M N ∈ RB by previous lines (∀-elim)
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Introduction

Generalization of Fundamental Lemma

Lemma (Main lemma)
If D : Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

Proof.

Case D =

D1

Γ, x :A ` M : B

Γ ` lam x .M : A→ B
lam

[σ](lam x .M) = lam x .([σ, x/x ]M) by properties of substitution
halts (lam x .[σ, x/x ]M) since it is a value
Suppose N ∈ RA.

[σ,N/x ]M ∈ RB by I.H. on D1 since σ ∈ RΓ

[N/x ][σ, x/x ]M ∈ RB by properties of substitution

app (lam x . [σ, x/x ]M) N ∈ RB by Backwards closure

Hence [σ](lam x .M) ∈ RA→B by definition
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Introduction

Challenging Benchmark

• Model different level of bindings
lambda-binder, ∀ in reducibility definition R, quantification over

substitutions and contexts

• Simultanous substitution and algebraic properties
Substitution lemma, Reason about composition, decomposition,

associativity, identity, etc.

[·]M = M

[σ,N/x ]M = [N/x ][σ, x/x ]M

[σ1][σ2]M = [[σ1]σ2]M

a dozen such properties are needed

• Main known approaches:
- Coq/Agda lack support for substitutions and binders
- Twelf, Delphin are too weak (to do it directly)
- Abella allows normalization proofs but lacks support for contexts

Francisco Ferreira Programming logical relations proofs 11 / 26
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Introduction

Belugaµ: Two Level Approach

Level 1: Contextual logical framework LF [HHP’93,TOCL’08]

• Compact representation of formal systems and derivations

• Higher-order abstract syntax and dependent types

 support for α-renaming, substitution, adequate representations

• Contextual LF: Contextual types characterize contextual objects [TOCL’08]
 support well-scoped derivations
 abstract notion of contexts and substitution [POPL’08,LFMTP’13]

Level 2: Functional programming with indexed types [POPL’08,POPL’12]

Proof term language for first-order logic over a specific domain (= contextual LF)
together with domain-specific induction principle and recursive definitions (=
indexed recursive types)

On paper proof Proofs as functions in Beluga

Case analysis Case analysis and pattern matching
Inversion Pattern matching using let-expression
Induction hypothesis Recursive call
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Beluga:Design and implementation

Step 1: Represent Types and Lambda-terms in LF

Types and Terms

Types A,B::= i Terms M, N ::= x | c
| A→ B | lam x .M

| app M N
Typing rules

c : i
const

x : A
u

...
M : B

(lam x .M) : (A→ B)
lamx

M : (A→ B) N : A

(app M N) : B
app

LF representation in Beluga

datatype tp:type =
| i: tp
| arr: tp → tp → tp;

datatype tm: tp → type =
| c : tm i
| lam: (tm A → tm B) → tm (arr A B)
| app: tm (arr A B) → tm A → tm B;
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Beluga:Design and implementation

Step 2: Represent the evaluation rules

Evaluation Judgment: M −→ M ′ read as “M steps to M ′”

app (lam x .M) N −→ [N/x ]M
s/beta

M −→ M ′

app M N −→ app M ′ N
s/app

Value Judgment: M val read as “M is a value”

c val
v/c

lam x .M val
v/lam

LF representation in Beluga
datatype step : tm A→tm A→ type =
| s/beta :

step (app (lam M) N) (M N)
| s/app : step M M’ →

step (app M N) (app M’ N);

datatype val : tm A → type =
| v/c : val c
| v/lam : val (lam M);

datatype mstep : tm A → tm A → type =
| refl : mstep M M
| onestep : step M M’ → mstep M’ M’’

→ mstep M M’’;

datatype halts : tm A → type =
| h/value : mstep M M’ → val M’ →

halts M;
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Beluga:Design and implementation

Reducibility Candidates as Indexed Types

Reducibility candidates for terms M ∈ RA:

Ri = {M | halts M}
RA→B = {M | halts M and ∀N ∈ RA, (app M N) ∈ RB}

Computation-level data types in Beluga

datatype Reduce : {A:[ ` tp]} {M:[ ` tm A]} ctype =
| I : [ ` halts M] → Reduce [ ` i] [` M]
| Arr : [ ` halts M] →

({N:[ ` tm A]} Reduce [ ` A] [ ` N] → Reduce [ ` B] [ ` app M N])
→ Reduce [ ` arr A B] [ ` M];

• [` app M N] and [ ` arr A B] are contextual types [TOCL’08].

• Note: → is overloaded.

- → is the LF function space : binders in the object language are
modelled by LF functions (used inside [ ])

- → is a computation-level function (used outside [ ])

• Not strictly positive definition, but stratified.
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Reducibility Candidates as Indexed Types

Reducibility candidates for substitutions σ ∈ RΓ :

· ∈ R·
σ ∈ RΓ N ∈ RA

(σ,N/x) ∈ RΓ,x :A

Computation-level data types in Beluga

datatype RedSub : (Γ:ctx){σ: ` Γ} ctype =
| Nil : RedSub [ ` ^ ]
| Cons : RedSub [ ` σ] → Reduce [ ` A] [ ` M] → RedSub [ ` σ M ];

• Contexts are structured sequences and are classified by context schemas

schema ctx = x:tm A.

• Substitution τ are first-class and have type Ψ ` Φ providing a mapping from
Φ to Ψ.
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Theorems as Computation-level Types

Lemma (Backward closed)

If M −→ M ′ and M ′ ∈ RA then M ∈ RA.

rec closed : [ ` step M M’] → Reduce [ ` A] [ ` M’] → Reduce [ ` A] [ ` M] = ? ;

Lemma (Main lemma)

If Γ ` M : A and σ ∈ RΓ then [σ]M ∈ RA.

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [ ` σ] → Reduce [ ` A] [ ` M σ] = ? ;
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Fundamental Lemma

rec closed : [ ` mstep M M’] → Reduce [ ` A] [ ` M’] → Reduce [ ` A] [ ` M]

= ? ;

rec main : {Γ:ctx}{M:[Γ ` tm A]} RedSub [ ` σ] → Reduce [ ` A] [ ` M σ] =

mlam Γ ⇒ mlam M ⇒ fn rs ⇒ case [Γ ` M ...] of

| [Γ ` #p ...] ⇒ lookup [Γ] [Γ ` #p ...] rs % Variable

| [Γ ` app (M1 ...) (M2 ...)] ⇒ % Application
let Arr ha f = main [Γ] [Γ ` M1 ...] rs in
f [ ` _ ] (main [Γ] [Γ ` M2 ...] rs)

| [Γ ` lam (λx. M1 ... x)] ⇒ % Abstraction
Arr [ ` h/value refl v/lam]
(mlam N ⇒ fn rN ⇒ closed [ ` s/beta]

(main [Γ,x:tm _] [Γ,x ` M1 ... x] (Cons rs rN)))

| [Γ ` c] ⇒ I [ ` h/value refl v/c]; % Constant

• Direct encoding of on-paper proof

• Equations about substitution properties automatically discharged
(amounts to roughly a dozen lemmas about substitution and weakening)

• Total encoding about 75 lines of Beluga code
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This Talk

Design and implementation of Beluga

• Introduction

• Example: Proof by logical relations

• Writing a proof in Beluga . . .

• Conclusion and current work
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Revisiting the Design of Beluga

• Level 1: Contextual LF

On paper proof In Beluga [IJCAR’10]

Well-formed derivations Dependent types
Renaming,Substitution α-renaming, β-reduction in LF

Well-scoped derivation Contextual types and objects [TOCL’08]
Context Context schemas
Properties of contexts Typing for schemas
(weakening, uniqueness)
Substitutions Substitution type [LFMTP’13]
(composition, identity)

• Level 2: Functional programming with indexed types [POPL’08,POPL’12]

Case analysis Case analysis and pattern matching

Inversion Pattern matching using let-expression

Induction hypothesis Recursive call
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Other Examples and Comparison

• Other examples using logical relations:

- Weak normalization which evaluates under lambda-abstraction
- Algorithmic equality for STLC (A. Cave) (draft available)

=⇒ Sufficient evidence that Beluga is ideally suited to support such
advanced proofs

• Comparison (concentrating on the given weak normalization proof)

- Coq/Agda formalization with well-scoped de Bruijn indices: dozen
additional lemmas

- Abella: 4 additional lemmas and diverges a bit from on-paper proof
- Twelf: Too weak to for directly encoding such proofs; Implement

auxiliary logic.

Francisco Ferreira Programming logical relations proofs 22 / 26



Beluga:Design and implementation

What Have We Achieved?

• Foundation for programming proofs in context [POPL’12]

- Proof term language for first-order logic over contextual LF as domain
- Uniform treatment of contextual types, context, . . .
- Modular foundation for dependently-typed programming with

phase-distinction ⇒ Generalization of DML and ATS

• Extending contextual LF with first-class substitutions and their
equational theory [LFMTP’13]

• Rich set of examples

- Type-preserving compiler for simply typed lambda-calculus (O. Savary
Belanger, S. Monnier, B. Pientka [CPP’13])

- (Weak) Normalization proofs (A. Cave and B.Pientka)

• Latest release in Feb’14: Support for indexed data types, first-class
substitutions, equational theory behind substitutions
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My Current Work

Developing a core calculus for Beluga:

• Elaboration of implicit parameters

• Elaboration to a more primitive core
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My Current Work

Developing a core calculus for Beluga:

• Elaboration of implicit parameters (User friendliness, [PPDP’14])

• Elaboration to a more primitive core(Easier to trust, de Bruijn
Criterion)
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Current Work

• Prototype in OCaml (ongoing - next release imminent)
providing an interactive programming mode

• Structural recursion (B. Pientka, S. S. Ruan, A. Abel)

Develops a foundation of structural recursive functions for Beluga; proof of

normalization; prototype implementation under way

• Coinduction in Beluga (D. Thibodeau, B. Pientka, A. Cave)

Extending work on simply-typed copatterns [POPL’13] to Beluga
• Case study:

- Type preserving compiler (O. Savary Belanger, B. Pientka, CPP’13)
- Proof-carrying authorization with constraints (Tao Xue)

• Extending Beluga to full dependent types (A. Cave)
• Elaboration for dependently typed programs (F. Ferreira, B. Pientka,

PPDP’14)
• ORBI - Benchmarks for comparing systems supporting HOAS

encodings (A. Felty, A. Momigliano, B.Pientka, March 2014)
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The End

Thank you!

Download prototype and examples at

http://complogic.cs.mcgill.ca/beluga/

Current Belugians:
Brigitte Pientka, Mathias Puech, Tao Xue, Andrew Cave, Francisco
Ferreira, Stefan Monnier, David Thibodeau, Sherry Shanshan Ruan,

Shawn Otis, Rohan Jacob-Rao, Scott Cooper,
Aidan Marchildon and Steve Thephsourinthone
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